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Resolution Enhancement for Mixed Boundary
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Abstract— In the mixed boundary inverse scattering problem
(ISP), conducting and dielectric scatterers coexist in the same
region, which challenges the present quantitative inverse scatter-
ing methods. Moreover, to ensure the incident waves penetrating
the lossy or high-contrast objects, lower wavelength is applied
in most inverse scattering applications. Therefore, methods with
wavelength or subwavelength resolution are required for the
mixed boundary ISP. In this article, we devise a quantitative
inversion scheme alternately updating the contrast of dielec-
tric scatterers and the T-matrix of conducting scatterers. The
proposed alternate parameter updating method (APUM) avoids
the reconstruction deterioration from both the large imaginary
parts of conducting contrasts and the limited expansion order
of the T-matrix. Then, we further improve the resolution of
the APUM by optimizing the incident fields, which is also a
regularization strategy. In particular, we design superoscillatory
incident fields to quantitatively converse the high spatial spectrum
of objects into low spectrum contrast sources, which can retain
the high-frequency information of objects in the low-passband of
the Green function. The results with synthetic data and single-
frequency Fresnel experimental data verify the effectiveness of
the proposed method.

Index Terms— Alternate parameter updating method (APUM),
contrast source inversion (CSI), inverse T-matrix method, quan-
titative inverse scattering problem (ISP), superoscillation.

I. INTRODUCTION

INVERSE scattering problems (ISPs) arise in diverse appli-
cation areas, such as nondestructive testing [1], [2], bio-

medical imaging [3], geological exploration [4], through wall
imaging [5], and ground penetrating radar [6]. In most of these
applications, dielectric and conducting objects exist in the
same region, which is a mixed boundary ISP. All these applica-
tions require incident wave penetrating observed objects, while
the skin effects of these lossy objects limit the wavelength
to the scale of objects. To image wavelength scale objects
with mixed boundary conditions, achieving superresolution in
inverse scattering imaging has always been the focus of the
relevant research fields [7]–[9].

In the mixed boundary ISP, qualitative methods recon-
struct the shape of scatterers only [10]–[12], of which the
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information is not enough. The quantitative methods such as
the contrast source inversion (CSI) method [13], [14] and
the inverse T-matrix method [15] can retrieve the physical
properties and distinguish between conducting scatterers and
dielectric scatterers. The CSI method solves the problem under
electric field integral equation (EFIE) model and approximates
the conducting scatterers by lossy dielectric scatterers accord-
ing to the volume equivalence principle. However, the CSI
method may fail in the case with high-loss dielectric scatterers
or PEC scatterers where the large imagery components will
corrupt the reconstructed results. To overcome these defects,
a uniform framework to model the scattering of different
types of scatterers is applied to recover the T-matrix coeffi-
cients of the scatterers [16]–[19]. Different from the volume
equivalence principle used in the EFIE model, the T-matrix
model describes scattering by imposing boundary conditions
on each discrete pixel with multipole expansion. The contrasts
of the dielectric scatterers are obtained from the small term
asymptotic approximations for T-matrix [15]. Because the
computational cost limits the expansion degrees, the approx-
imations in the inverse T-matrix method are inaccurate. The
reconstructions of dielectric scatterers in the inverse T-matrix
method cannot achieve the same resolution as CSI. Therefore,
a combined method to make advantage of both methods is a
possible way to improve the imaging quality.

Compared with the ISP for dielectric objects, the mixed
boundary ISP applies lower frequency waves to penetrate
the objects and requires higher imaging resolution. Therefore,
achieving subwavelength resolution in the quantitative mixed
boundary ISP is a problem to be solved. As Green’s function
in free space is bandlimited with free space wavenumber
k0, the high-frequency information of the induced currents is
discarded from the scattering fields [20]. Consequently, the
spatial resolution of inverse source problems is limited to π /k0,
which is the Rayleigh resolution limit [8]. From the math-
ematical perspective, such a compact integral operator with
Green’s function as the kernel causes the ill-posedness of the
ISPs, which results in the solution not depending continuously
on the data [21]. Moreover, for scattering fields mapped by
the compact Green operator belonging to a compact set, the
correlation between each measured data point increases with
the number of measurements, which makes the data equation
undetermined and ill-conditioned regardless of the number
of sensors [22], [23]. Therefore, achieving superresolution
and regularization of ill-posed problems have the same end
in ISPs.
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Various types of regularization techniques directly impose
constrains on solutions, including the total variation type [24],
multiplicative regularization type [25], Bayesian type [26], and
sparsity type [27], [28]. Some of these constraints are not uni-
versal for practical problems. Other methods make use of the
nonlinearity of the ISPs to defeat the ill-posedness [29]–[32].
Compared with linear inverse scattering methods, nonlin-
ear inversion algorithms consider the Lippmann–Schwinger
equation in addition and show subwavelength resolution
performances [8], [33]. A widely accepted explanation for this
superresolution ability is that the conversion of evanescent
waves to propagating waves is included in the nonlinear
model [8], [34]–[36]. Therefore, the incident field modulating
method is proposed to increase the reconstructed informa-
tion [37]. However, disagreement arises regarding the lack of
a convincing quantitative approach to extract the evanescent
wave spectrum from the measured propagating wave spec-
trum [9]. Recent investigation of the superresolution effect in
nonlinear inverse scattering gives an unoptimistic solution in
which superresolution in nonlinear ISPs is unavailable without
priori information [38]. Instead of the inverse source method,
the first kind of Born approximation is adopted as the example
of linear inverse scattering in [38], which, however, neglects
the fact that the Rayleigh limit arises from the inverse source
problem instead of the quantitative ISP. The superresolution
effects in the nonlinear inverse problem remain controversial.

Since the lack of high-frequency information cannot be
remedied by any mathematical technique, most physical
superresolution methods attempt to gain access to evanes-
cent waves. Lens, slabs, or metasurfaces are arranged near
the objects conversing evanescent waves to propagating
waves [39]–[44]. These evanescent-to-propagating wave con-
version devices alter the domain of interest (DOI) from free
space into space with an inhomogeneous background medium,
of which Green’s function has wider bandwidth [40], and cast
the inverse problem into a well-conditioned equation [41].
However, these approaches are limited to the case of coop-
erative objects, which is unsuited to most inverse scattering
applications. The other categories of physical superresolution
methods make use of superoscillation effects without extra
equipment. The effect of superoscillation produces oscillations
that vary faster than the highest Fourier component of the
oscillations [45]. Based on this, incident waves with subwave-
length spots achieve superresolution in far fields without con-
tributions from evanescent fields [46]–[51]. Sharing the same
principle as Schelkunoff’s superdirective arrays, superoscilla-
tory waves come with exponentially growing energy, which
makes it a tradeoff between the signal-to-noise ratio (SNR) and
the bandwidth [52], [53]. Because the superoscillatory wave
only exists in the local segment, prior information for the scale
of DOI leads to regularization.

In this article, we treated the mixed boundary ISP as an
alternate inversion of the contrast and the T-matrix. Instead
of updating the contrast and the T-matrix with the alternating
direction multiplier method (ADMM), an alternate parameter
updating method (APUM) is proposed to alternately update the
contrast of dielectrics and the T-matrix of conductors. APUM
avoids the contrast interfered by the large imaginary parts of

Fig. 1. Geometry for the ISP: the dielectric scatterers with permittivity ε
and the PEC scatterers coexist in the DOI.

the conductors and improves the accuracy of the reconstructed
T-matrix. To further improve the resolution, we proposed
an incident field optimization for quantitatively coupling the
high-frequency information of objects into a propagating
wave. Superoscillation effects can mix the high-frequency
information into bandlimited-induced currents, which is a
superoscillatory-to-propagating wave conversion. The conver-
sion mechanism works on quantitative ISP (most nonlinear
problems) instead of qualitative ISP (typical linear problems).
The singular value decomposition (SVD) of the matrix in
the data equation shows that the optimization of the incident
fields can increase the singular values. The linear relationship
between the data and the incident fields makes the optimization
of the incident fields a regularization strategy.

The main contributions of the proposed methods are as
follows: first, the APUM is proposed for mixed boundary
conditions, which provides the contrast and the T-matrix with
higher accuracy. Second, a quantitative superoscillatory-to-
evanescent wave conversion is accomplished by the incident
field optimization, which is a regularization strategy and
provides a uniform resolution enhancement for the mixed
boundary ISP.

This article is organized as follows. Section II contrasts
the volume equivalence model and the boundary condition
model and combines two models. Section III presents the use
of high-frequency information and incident field optimization.
Section IV presents the APUM. In Section V, we present the
synthetic and experimental results. Conclusions are made in
Section VI.

II. FORMULATION OF THE PROBLEM

A typical 2-D ISP is shown in Fig. 1.
Region D is the DOI where the probed objects are located,

and curve C is where the receivers and transmitters are located.
Transmitters emit the single-frequency wave simultaneously,
and receivers measure the steady-state scattering field. The
cylindrical dielectric scatterers and the cylindrical PEC scat-
terers with arbitrary cross sections are inhomogeneous in the
(x , y) plane but homogeneous along the z-axis. The incident
wave is a transverse magnetic (TM) wave, which simplifies the
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problem into a scalar equation. The scatterers are nonmagnetic
mediums.

A. Volume Equivalence Model

According to the volume equivalence principle, we obtain
the data equation and the state equation to describe the imaging
problem as a nonlinear problem as⎧⎨

⎩ Esca(rm) = k2
0

∫
D

G0
(
rm, r ′)E

(
r ′)χ(r ′)d r ′

E(r) = Einc(r) + Esca(r)
(1)

where E, Esca, Einc, G0, k0, and rm are the total field,
the scattering field, the incident field, the free space Green
function, the free space wavenumber, and the position vector
of the mth receiver, respectively. χ = εr − 1 is the contrast,
where εr is the relative permittivity. Introducing the contrast
source w = Eχ into it and discrete (1) with the Galerkin
method, we obtain the matrix form of the inverse contrast
problem as {

esca
q = GC · wq

wq = χ � (
einc

q + G D · wq
) (2)

where subscript q represents the qth illumination, and � is
the symbol of element-wise multiplication.

B. T-Matrix Model

In the T-matrix model, the DOI is discretized into N small
cylindrical elements at first. The center of the nth elements
is rn . Then, the field is divided into the incident field Einc

outside of the elements, the scattering field Esca outside of the
elements, and the transmitting fields Etrans inside each of the
elements. All the fields can be represented as the form of
multipole expansion with different expansion coefficients [16].
The boundary conditions imposed on the surface of the nth
element with radius R can be expressed as[

Einc(r) + Esca(r)
]
|r−rn |=R

= Etrans(r)
∣∣|r−rn |=R

(3)

while the right components of (3) are zero in the PEC scat-
terers. The corresponding boundary condition of the magnetic
field for the nth element is obtained from the electric field as[

∂ Einc(r)
∂r

+ ∂ Esca(r)
∂r

]
|r−rn |=R

= ∂ Etrans(r)
∂r

∣∣∣∣|r−rn |=R

.

(4)

Solving (3) and (4) (see the Appendix), we obtain the
coefficients of scattering field at pth order multipole expansion
from the nth element

cnp = t p
n

⎡
⎣i p

n +
N∑

n′=1

+∞∑
p′=−∞

s p,p′
n,n′
(
1 − δn,n′

)
cn′ p′

⎤
⎦ (5)

where cnp is the pth order multipole expansion of the scat-
tering field at rn, i p

n is the pth order multipole expansion of
the incident field at rn, and s p,p′

n,n′ is the translation coefficient
between the pth order multipole at rn and p′th order multipole
at rn′ . t p

n is the transmitting parameter for the boundary

condition of the nth element. The transmitting parameter of
the dielectric element is

t p
n = kn Jp(k0 R)Jp+1(kn R) − k0 Jp(kn R)Jp+1(k0 R)

k0 Jp(kn R)H (2)
p+1(k0 R) − kn H (2)

p (k0 R)Jp+1(kn R)
(6)

while the PEC element has the parameter

t p
n = −Jp(k0 R)/H (2)

p (k0 R). (7)

Given the scattering coefficients cnp, the scattering field can
be expressed as

Esca(r) = uz

+P∑
p=−P

N∑
n=1

cnp H (2)
p (k0|r − rn|)e− j pϕ(r−rn) (8)

where ϕ(r − rn) is the angle of r − rn in cylindrical coordinate.
For all cylindrical elements, (8) and (5) can be written in

matrix form {
esca

q = G · cq

cq = T
(
iq + S · cq

) (9)

where q represents qth illumination, esca
q is the vector of the

measured scattering field, cq is the vector of the scattering
coefficient, iq is the vector of the incident field coefficient, S
is the translational matrix, and T is the transmitting matrix,
known as the T-matrix. Obviously, (9) has a similar formula-
tion to (2). However, (9) is established on the infinite order
expansion of multipoles. The truncation of the expansion order
p leads to a decrease in the model accuracy. Therefore, inverse
T-matrix methods cannot perform as well as inverse contrast
methods.

C. Combined Parameter Model

The volume equivalence model cannot handle the conduc-
tors for the large imaginary part, while the boundary condition
model has the ability to handle different types of scatterers.
However, the boundary condition model has less accuracy than
the volume equivalence model due to its truncated expansion
order. A combined parameter model can benefit from both
models.

The data equations in (2)

GC =
[

k2
0π R2

4 j
H (2)

0 (k0|rm − rn|)
]

M×N

(10)

is similar to the data equations in (9)

G = [
H (2)

n (k0|rm − rn|)e− jnϕ(rm−rn)
]

M×N(2P+1)
. (11)

Introducing the data equation in (9) into the data equation
in (2), we obtain

GC · wq = G · cq . (12)

For the truncation number p = 0, the scattering coefficients
are linear to the contrast sources

cq = j
k2

0π R2

4
wq . (13)
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Therefore, the volume equivalence model and the T-matrix
model share the same data equation, and the combined para-
meter model is⎧⎪⎪⎨

⎪⎪⎩
esca

q = GC · wq

wq = χ � (
einc

q + GD · wq
)

wq = T
(
− j

η0

4π R2
i q + S · wq

)
.

(14)

In principle, the T-matrix model with smaller mesh size
and higher multipole expansion orders has higher accuracy.
However, with given tolerance, the accuracy of the T-matrix
model can trade off the expansion orders against the scale of
mesh grids. Therefore, the multipole expansion at the 0th order
works for the most cases at the cost of finer mesh grids.

Because the truncation number of the multipole expansion
in (14) is p = 0, the difference between the dielectric
scatterers and the PEC scatterers is the real part of the elements
in the T-matrix. Appling asymptotic approximations of Bessel
functions to (6) and (7) at zero order, we have

t0
n ≈

⎧⎪⎪⎨
⎪⎪⎩

− j
π(k0 R)2

4
[1−εr(rn)], dielectric

−
[

π

2 ln(2/γ k0 R)

]2

+ j
π

2 ln(2/γ k0 R)
, PEC

(15)

where γ ≈ 1.78. Thanks to the observation, the scatterers
could be classified as being metallic or dielectric. In (15), the
dielectric elements of the T-matrix have positive imaginary
parts, while the PEC elements have negative imaginary parts.

III. SOLUTION METHOD OF INVERSION PROBLEM

With the given combined model, the inversion method for
the mixed boundary ISP is studied in this section. Solving (14)
can be formulated as the following optimization problem:

min

∑
q

∥∥γ q

∥∥2

2∑
q

∥∥χ � einc
q

∥∥2

2

+
∑

q

∥∥ςq

∥∥2

2∑
q

∥∥− jη0T i q/4π R2
∥∥2

2

s.t. esca
q = GC · wq q = 1, . . . , Q (16)

where γq and ςq are the state errors of (14) defined as

γ q = χ � (
einc

q + GDwq
)− wq

ςq = T
(
− j

η0

4π R2
i q + Swq

)
− wq . (17)

Equation (16) can be solved by ADMM. However, the rela-
tionship between χ and T is only established on the multipole
expansion at zero order, which limits the accuracy of the
reconstructed T-matrix. Moreover, in the mixed boundary ISP,
the infinite imaginary part of χ for PEC scatterers corrupts the
real part of χ for dielectric scatterers. To avoid these defects,
updating χ and T is divided into updating for dielectric
scatterers and PEC scatterers alternately.

A. Initial Guess of the Boundary Conditions

To reconstruct dielectric scatterers and PEC scatterers,
an initial guess of the boundary conditions is provided by the
inverse T-matrix, which can be formulated as the cost function

f
(
wq, T

) =
∑

q

∥∥rq

∥∥2
2∑

q

∥∥esca
q

∥∥2

2

+
∑

q

∥∥ςq

∥∥2

2∑
q

∥∥− jη0T i q/4π R2
∥∥2

2

(18)

where rq is the data error defined as

rq = esca
q − GCwq . (19)

Minimization of (18) can be solved by the Polak–Ribière–
Polyak (PRP) conjugate gradient method. Since the PRP
conjugate gradient method has a strong global convergence
property for the most unconstrained convex problems, the
initial value of wq can simply be determined by the back
propagation method. Assuming wq,n−1 and T n−1 are known,
wq,n is updated by

wq,n = wq,n−1 + aq,nvq,n . (20)

vq,n is the PRP conjugate gradient direction⎧⎪⎨
⎪⎩

vq,0 = 0

vq,n = gq,n +
〈
gq,n, gq,n − gq,n−1

〉
〈
gq,n−1, gq,n−1

〉 vq,n−1
(21)

where

gq,n = − GH
c rq,n−1∑
q

∥∥esca
q

∥∥2

2

+ ςq,n−1 − (T n−1 S)H ςq,n−1∑
q

∥∥− jη0T n−1 i q/4π R2
∥∥2

2

. (22)

aq,n is the exact line search step width

aq,n =
[

vH
q,n · GH

C rq,n−1∑
q

∥∥esca
q

∥∥2

2

−
(
v p,n − T n−1 S · vq,n

)H
ςq,n−1∑

q

∥∥− jη0T n−1 i q/4π R2
∥∥2

2

]

·
[ ∥∥GCvq,n

∥∥2
2∑

q

∥∥esca
q

∥∥2

2

+
∥∥vq,n − Tn−1 S · vq,n

∥∥2
2∑

q

∥∥− jη0T n−1 i q/4π R2
∥∥2

2

]−1

.

(23)

Once wq,n is determined, Tn is obtained by

T n = diag

⎧⎨
⎩

∑
q

(
iq + Swq,n

)� wq,n∑
q

(
i q + Swq,n

)� (
i q + Swq,n

)
⎫⎬
⎭. (24)

With the reconstructed T-matrix, the initial guess of the
boundary condition is derived according to (15). The real parts
of dielectric scatterers are zeros, while the real parts of PEC
scatterers are smaller than zeros.

Because the aforementioned methods are established on the
multipole expansion order p = 0, S is an N × N dimension
Toeplitz matrix in this case. The multiplication between S and
any N × 1 dimension vector can be reformulated as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

yN

yN−1
...

y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I F FT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F FT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
...

sN

sN−1
...

s2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F FT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xN

xN−1
...

x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

which simplifies N2 points multiplication to 2N points mul-
tiplication and reduces the calculation amount effectively.
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Fig. 2. Geometry for the volume equivalence model with PEC background:
(a) original problem; (b) object-free problem; and (c) equivalent problem.

B. Volume Equivalence Model With PEC Background

To handle the mixed boundary problem, we reconstruct the
contrast of the dielectric scatterers and the T-matrix of the PEC
scatterers alternately. The contrast of the dielectric scatterers
is reconstructed in this section, while the T-matrix of the PEC
scatterers is acquired from the initial guess or the last step
iteration. Since PEC scatterers are obtained from the real parts
of the T-matrix, the PEC scatterers are treated as the known
background of the volume equivalence model, which avoids
the influence of the infinite imaginary part of the contrasts for
PEC scatterers.

The original problem is shown in Fig. 2(a). E and H are
the electric and magnetic total fields. The Maxwell equation
in the original problem is{

∇ × H = jωεE

∇ × E = − jωμ0 H
(26)

where

ε(r) =

⎧⎪⎨
⎪⎩

εrε0, r ∈ dielectric

ε0, r ∈ free space

ε0 − jσ/ω, r ∈ PEC.

(27)

σ is the electrical conductivity. In the case with low-frequency
wave, the conductor scatterers can be treated as PEC scatterers
of which σ is infinite. However, for good accordance with the
practice, we still assign σ a value in the numerical simulation.

The dielectric object-free problem in Fig. 2(b) consists of
PEC scatterers only, of which the electric and magnetic total
fields are Epec and Hpec. The dielectric object-free problem is
formulated as {

∇ × Hpec = jωεpec Epec

∇ × Epec = − jωμ0 Hpec (28)

where

εpec(r) =
{

ε0 − jσ/ω, r ∈ PEC

ε0, r ∈ other.
(29)

The original problem minus the dielectric object-free problem
is {

∇ × (H − Hpec) = jω
[
εE − εpec Epec]

∇ × (E − Epec) = − jωμ0(H − Hpec).
(30)

Defining Hdie = H − Hpec and Edie = E − Epec, we obtain
the total fields of the equivalent problem in Fig. 2(c), which
can be formulated as{

∇ × Hdie = Jdie + jωεpec Edie

∇ × Edie = − jωμ0 Hdie.
(31)

Introducing (30) into (31), we obtain

Jdie = jωε0 Eχdie (32)

where χdie = εr − 1. EFIE of (31) is

Edie(r) = k2
0

∫
D

G pec
(
r, r ′)χdie

(
r ′)E(r ′)d r ′ (33)

of which Gpec is the Green function with the PEC scat-
terer background. Equation (33) is discrete with the Galerkin
method as

edie = Gpec
D

(
χdie � e

)
. (34)

According to the relationship between the Green function and
the total field of the Dirac source, the scattering matrix is
determined by

Gpec
D ≈

[
jπω2 R2ε0 Epec

rn′ (rn)
]

N×N
(35)

where Epec
rn′ is the total field of the Dirac source at rn′ . For the

T-matrix of PEC scatterers determined in the initial guess, the
total field is obtained via (9) as

Epec
rn′ (rn) = einc

n′ − j
η0

4π R2
GC · (I − T S)−1T in′ . (36)

Therefore, the ISP with a given PEC background is formu-
lated as {

edie
q = Gpec

C wdie
q

wdie
q = χdie � (

epec
q + Gpec

D wdie
q

) (37)

where

wq = wdie
q + wpec

q . (38)

χdie is determined to minimize the cost function

g
(
wdie

q ,χ die
) =

∑
q

∥∥γ q

∥∥2

2∑
q

∥∥χdie � epec
q

∥∥2
2

+
∑

q

∥∥rdie
q

∥∥2

2∑
q

∥∥edie
q

∥∥2

2

(39)

where rdie
q is the data error defined as

rdie
q = esca

q − GCwdie
q . (40)

Equation (39) is minimized by the conjugate gradient
method as well. The initial value of wdie

q is determined by
the results of (20) as

wdie
q,0(r) =

{
wq(r), Re{T (r)} = 0

0, Re{T (r)} < 0.
(41)

Updating of wdie
q is

wdie
q,n = wdie

q,n−1 + aq,nvq,n (42)
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of which vq,n is the PRP conjugate gradient direction. The
conjugate gradient of wdie

q is

gq,n = − GH
C rq,n−1∑
q

∥∥edie
q

∥∥2 +
GH

D

(
χdie � γ q

)
− γ q∑

p

∥∥χdie � epec
q

∥∥2 . (43)

aq,n is the exact step width

aq,n

=
[

vH
q,n · GH

C rq,n−1∑
p

∥∥edie
q

∥∥2

2

−
(
χdie

n−1 � GDv p,n − v p,n
)H

γ q,n−1∑
p

∥∥χdie
n−1 � epec

q

∥∥2
2

]

·
[ ∥∥GCvq,n

∥∥2
2∑

p

∥∥edie
q

∥∥2

2

+
∥∥χdie

n−1 � GDv p,n − v p,n

∥∥2
2∑

p

∥∥χdie
n−1 � epec

q

∥∥2
2

]−1

. (44)

Once wdie
q is determined, χdie is obtained by

Re
{
χdie(r)

} = −
∑

q Re
{
wdie

q (r)Eq(r)
}

∑
q |Eq(r)|2

Im
{
χdie(r)

} = −
∑

q Im
{
wdie

q (r)Eq(r)
}

∑
q |Eq(r)|2 . (45)

In this way, the PEC scatterers are treated as a background
medium, which constrains the solution space of the dielectric
scatterers.

C. Alternate Updating

The contrast sources are divided into wpec
q for PEC scatterers

and wdie
q for dielectric scatterers. Given the two portions of

the contrast sources, inversion (14) can be carried out as
minimization of the cost function

L
(
wpec

q ,wdie
q , T ,χdie) = f

(
wpec

q , T
)+ g

(
wdie

q ,χ die). (46)

The alternate updating of the contrast sources has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
pec
q,k = arg min

w
pec
q

L
(
wpec

q ,wdie
q,k−1, T k−1,χ

die
k−1

)
T k = arg min

T
L
(
w

pec
q,k,w

die
q,k−1, T ,χdie

k−1

)
wdie

q,k = arg min
wdie

q

L
(
w

pec
q,k,w

die
q , T k−1,χ

die
k−1

)
χdie

k = arg min
χ die

L
(
w

pec
q,k,w

die
q,k, T k,χ

die
)
.

(47)

For wpec
q and wdie

q independent of each other, minimization of
L with respect to wpec

q or wdie
q equals the minimization of f

(wpec
q ) or g (wdie

q ). Therefore, each step of updating in (47)
remains the same as the aforementioned modified conjugate
gradient method.

Thus, the contrast of the dielectric scatterers and the
T-matrix of the PEC scatterers are updated alternately, which
improves the quantitative reconstruction of the mixed bound-
ary ISP. However, lossy objects limit the available wavelength
to the scale of imaged objects. The wavelength in the mixed
boundary ISP is much longer than the ones in the ISP with
dielectric scatterers only, which leads to the demand for
higher resolution. Therefore, the incident field optimization
is proposed as a regularization strategy to further improve the
performance of the APUM.

IV. OPTIMIZATION OF INCIDENT FIELDS

Introducing the two state equations of (14) into the data
equation, we obtain{

esca
q = GC · (I − χ � GD)−1einc

q � χ

esca
q = − j

η0

4π R2
GC · (I − T S)−1T iq

(48)

where (I − χ � GD)−1einc
q is the total field eq , and

(I − TS)−1iq is the multipole expansion coefficients of the
total field. Equation (48) exposes the nonlinearity of the
inverse problem.

A. Ill-Posedness of the Problem

In (48), Gc is a compact operator, of which the point
spectrum converges to zero. The small singular values of Gc

make it noninvertible, and the data equation in (14) is an ill-
posed problem. The spatial spectrum of the free space Green
function is

G̃(k) =
∫ +∞

−∞

∫ 2π

0
G0(r)e− j k·rd r

= − jπ

2
lim

x→∞

∫ +∞

−∞
r H (2)

0 (k0r)J0(krr)dr

≈ − j

2k0
δ(kr − k0) (49)

which shows the spatial spectrum of Gc limited to k0. As a
consequence, the high spatial spectrum of wq is cut off from
the scattering field, which limits the resolution of wq to the
Rayleigh limit π /k0.

In (48), TS and χ � GD are also compact operators.
According to the Fredholm alternative theorem, (I − TS)−1

and (I − χ � GD)−1 are regular operator for any T
and χ . Therefore, T and χ have no significant impact on
the distribution of the singular values for (I − TS)−1 and
(I − χ � GD)−1. With given incident fields, the ill-posedness
does not change with the objects. Therefore, (I − χ �
GD)−1einc

q � χ and (I − TS)−1Tiq share the same solution
spaces with einc

q � χ and Tiq . Similar conclusion is obtained
in [38], where the solution space of the fully nonlinear scheme
is not better than the one of the first order Born approximation
scheme. Hence, the resolution of einc

q � χ and Tiq is also
maintained at π /k0. Given the spectrum limits of einc

q � χ

and Tiq , the available spectra of χ and T depend on the
incident fields.

Therefore, optimization of the incident fields is a key to
retain high-frequency information of objects in the scattering
fields.

B. Superoscillatory-to-Propagating Wave Conversion

In computational imaging methods, knowledge of incident
fields is indispensable. Although the spectra of χ � einc

q and
T iq are limited by the Green function Gc, the spectra of χ and
T depend on both the incident fields and the Green function,
which can be improved by optimization for incident fields.
The relationship between the spectra of scattering fields and
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the spectra of contrasts is

Ẽ
sca
q (k) = k2

0 G̃0(k)

∫
∞

Eq
(
r ′)χ(r ′)D

(
r ′)e− j k·r ′

d r ′

= k2
0 G̃0(k)w̃q(k) (50)

where D is the characteristic function of region D. wq is the
mixing between χ and EqD . Moreover, the uniqueness of
(I − χ � GD)−1 indicates that the bandwidth of wq depends
on the mixing between χ and Einc

q D .
According to superoscillation theory, the waveform over

particular intervals shows local oscillations with an arbitrary
frequency outside the frequency range of the waveform [34].
The spectrum of the local incident fields Einc

q D can be
designed to mix a specific high spatial spectrum of χ into the
low-passband of the Green function. The multipole expansion
at the coordinate origin of the incident field is as follows:

Einc(r) = uz

+∞∑
p=−∞

⎡
⎢⎣

Jp(k0r)e− j pϕ(r)

I∑
i=1

+τ∑
γ=−τ

aγ i (q)H (2)
γ+p(k0ri )

e j(γ+p)ϕ(r i )e jγπ

⎤
⎥⎦

= uz

+∞∑
p=−∞

[
Jp(k0r)e− j pϕ(r) Fp(q)

]
. (51)

The spectrum of the mixing between χ and Einc
q D is∫

D
Einc

q

(
r ′)χ(r ′)e− j k·r ′

d r ′

=
+∞∑

p=−∞
Fp(q)

∫
D

Jp
(
k0r ′)e− j pϕ ′

χ
(
r ′)e− j k·r ′

d r ′. (52)

For the convenience of derivation, the DOI is circular with
radius RD . Supposing the spectrum of the contrast is kq, the
contrast is

χ(r) = e− j kq ·r . (53)

By substituting (52) and (53) into (51), the mixing spectrum
can be expressed as∫

D
Einc

q

(
r ′)χ(r ′)e− j k·r ′

d r ′

=
+∞∑

p=−∞

⎡
⎣ Fp(q)e− j p[ϕ(kq)−π/2]∫ RD

0
Jp
(
k0r ′)Jp

(
kqr ′)r ′dr ′

⎤
⎦

=
+∞∑

p=−∞

⎧⎪⎪⎨
⎪⎪⎩

Fp(q)e− j p[ϕ(kq)−π/2] RD

k2
0 − k2

q[
k0 Jp

(
kq RD

)
Jp+1(k0 RD)

−k p Jp(k0 RD)Jp+1
(
kq RD

) ]
⎫⎪⎪⎬
⎪⎪⎭ (54)

where kq 	= k0. In the case kq = k0, the mixing spectrum is∫
D

Einc
q

(
r ′)χ(r ′)e− j k·r ′

d r ′

=
+∞∑

p=−∞

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fp(q)e− j p[ϕ(kq)−π/2] R2
D

2⎧⎪⎨
⎪⎩
[
J ′

p(k0 RD)
]2

+
(

1 − p2

k2
0 R2

D

)
J 2

p

(
kq RD

)
⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (55)

Fig. 3. Spectra of: (a) incident field excited by uniform line sources and
(b) sum of incident fields excited by optimized line sources.

Fig. 4. Spectrum of: (a) sum of contrast sources excited by uniform sources
and (b) sum of contrast sources excited by optimized sources.

For Fp being linear to αγ i , (54) can be discretized by truncat-
ing the multipole expansion to order P as follows:∫

D
Einc

q

(
r ′)χ(r ′)e− j k·r ′

d r ′ ≈ H̃qαq (56)

where αq is the weight of each multipole source for the qth
incident field. Because the spectrum of (56) is closer to the
local spectrum of the Green function, the less high-frequency
information in the contrast source is filtered by the Green
function. To convert the high spectrum of contrast with kq > k0

into the low-passband of the Green function, we have

min
αq

∥∥H̃qαq − g̃0

∥∥2

2 (57)

where g̃0 is the 2-D-fast Fourier transform (FFT) of the Green
function in DOI. Equation (57) can be solved by the conjugate
gradient method.

The performance of this method is examined as follows.
The DOI is a square with sides of length λ0, and the
measurement curve C is a circle with a radius 3λ0 whose
center is the same as the DOI. Forty sources are equally
spaced in the measurement curve. The object spectra kq are
set as [−6k0, 6k0]. Fig. 3 shows the spectra of the incident
fields.

Fig. 3 shows the spectrum of the incident field. Both spectra
are normalized and logarithmically transformed with 20log(.).
Obviously, the local bandwidth of the optimized incident field
is 3k0, while the local bandwidth of the uniform excited
incident field remains k0. Fig. 4 depicts the spectrum of
corresponding contrast sources.

The spectra of contrast sources in Fig. 4 come from the sum
of contrasts with kq ∈ [−6k0, 6k0] illuminated by uniform
excited incident fields and optimized incident fields. Both
spectra are normalized and logarithmically transformed with
20log(.). The bandwidth of the contrast source of uniform
excited incident fields remains in the range of kq , while the
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bandwidth of the contrast source of optimized incident fields is
compressed into k0. The numerical example shows the ability
to keep the spectrum of contrast sources for the contrast
with kq > k0 in the low-passband of the Green function.
Applying the incident field optimization for different kq can
retain each part of the wideband spectrum of the contrast,
which provides a quantitative method to acquire the high-
frequency information of the contrasts.

V. RESULTS AND DISCUSSION

In this section, we first compare the performances of CSI,
inverse T-matrix, and the new inversion method with and
without incident fields optimized. Then, the new inversion
method is verified against experimental laboratory-controlled
data.

A. Example 1 With Synthetic Data

To assess the resolution performance of the proposed
approach, we exploited synthetic data from method of the
moments (MOM). The forward problem is solved with the
conjugate gradient FFT (CG-FFT) method to acquire the
measurement data [54]. Ten percent additive white Gaussian
noise (AWGN) is added to the synthetic data for all tests. The
first test is employed to compare the reconstruction results
with and without incident field optimization. The second test
is employed to verify APUM against objects with mixed
boundary conditions, of which the result is compared with
the results of the normal CSI and inverse T-matrix methods.
The third test applied APUM along with the incident field
optimized on objects with mixed boundary conditions. The
reconstruction errors are quantified by

Err = ∥∥χn − χ
∥∥

2/‖χ‖2. (58)

In the first example, we use an E shape dielectric object
with width λ0/3 and height 3λ0/5, which has shape edges
and small details. Contrast of the objects is 4. The DOI
is a square with sides of length λ0, and the measurement
curve C is a circle with radius 3λ0 whose center is the
same as the DOI. Forty transmitters and forty receivers are
equally spaced in the measurement curve. The discrete form
of the problem is obtained by dividing the DOI into 30 ×
30 subsquares. To avoid inverse crime, the forward problems
are calculated with a finer 50 × 50 grid mesh. Because there
are only transmission conditions on the boundaries of objects,
APUM reduces to the normal CSI method. The incident
fields are optimized with the object contrast spectra kq set
as [−6k0, 6k0]. In comparison, the incident fields without
optimization are excited by one of the 40 sources each time
with uniform weighting. According to the results in Fig. 2(a),
there are few superoscillation effects in the incident fields
excited by 40 sources in turn. Fig. 5 shows the original
contrast, the initial values of the contrast sources, and the
reconstructed contrasts. The spectra of the sums of contrast
sources for the two results are depicted in Fig. 6.

The results with optimized incident fields possess sharper
edges than the results with uniform excited incident fields.
The corresponding errors of the result with optimization

Fig. 5. (a) Original contrast; (b) initial value of the contrast source with
uniform incident fields; (c) reconstructed contrast with uniform incident fields;
(d) initial value of the contrast source with optimized incident field; and
(e) reconstructed contrast with optimized incident field.

Fig. 6. Spectrum of: (a) contrast sources excited by uniform sources and
(b) sum of contrast sources excited by optimized sources.

are smaller than those of the result without optimization.
There are significant differences between the initial guess in
Fig. 5(b) and (d) and the final results in Fig. 5(c) and (e),
which shows that the initial value of the contrast source
has little effect on the iteration. The difference among the
reconstructed contrast is mainly determined by the difference
among the ground truths of the contrast sources, which shows
the importance of optimizing the incident fields. The thin cyan
dotted lines in Fig. 6 are indications of the low-passband of the
Green function. The sum of contrast sources with optimization
conserves energy in the low-passband of the Green function,
while the sum of contrast sources without optimization has
fewer components in the low-passband of the Green function.

To further test the stability of the superoscillation effects,
we add Gaussian noise with zero mean at each measurement.
The variance of the noise is defined as

σ 2
noise =

∑M
m=1

∥∥esca
i (m)

∥∥2

M · SN R
(59)

where SNR is the signal-to-noise ratio. The reconstruction
errors in iteration with different SNRs are depicted in Fig. 7.

The errors with uniform weighting are higher than the errors
with optimized weighting, which shows the regularization
effect of superoscillation. However, the errors of optimized
weighting with 5 dB SNR raise up after 200 iterations, which
shows lack of convergence. On the contrary, the errors of
uniform weighting with 5 dB SNR converge to 0.63. There-
fore, the superoscillation effect, for the considered case, cannot
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Fig. 7. Reconstruction errors in iterations. The purple line with “x” symbol,
the orange line with “o” symbol, and the yellow solid line are the errors with
uniform incident fields where the SNRs are 0, 5, and 10 dB, respectively. The
green dashed line, the blue dash-dotted line, and the red dotted line are the
errors with optimized incident fields where the SNRs are 0, 5, and 10 dB,
respectively.

Fig. 8. Example 1: SVD of operators G0 and G0E. The x-axis is the number
of singular values and y-axis is the normalized singular value. The black
dashed line is the SVD of G0; the blue dotted line is the SVD of G0E in
classical-CSI; the red line is the SVD of G0E in superoscillation-CSI; and
the thin black dotted line is the reference line of 0.1.

work at SNR lower than 5 dB, and that, generally speaking,
care should be provided to their use for low SNRs.

For the scattering data linear to the incident fields, the
equation with optimized incident fields is a weighted combi-
nation of the scattering equation with uniform excited incident
fields. The data equation can be rewritten as the operator G0E
mapping the contrast χ into the data esca

q . The weighting of
the equations enhances the small singular values of operator
G0E. The SVDs of G0E with and without optimization are
shown in Fig. 8. The black dotted line indicates the level
of noise. As G0E is a compact operator, the singular values
of G0E converge to zero in both cases. The small singular
values below the noise level are unavailable in reconstructions.
However, the singular values with the incident field optimized
descend slower than those without optimization. Therefore,
optimization of incident fields plays a regularization role in
the scattering equation.

B. Example 2 With Synthetic Data

To evaluate the capacity of mixed objects imaging, in the
second example, we apply APUM to objects consisting of
dielectric scatterers and conducting scatterers. A square copper
cylinder with a side length λ0/5 is wrapped in a circular
dielectric cylinder with a radius 2λ0/5. The conductivity of the
copper cylinder is 6 × 107 S/m, and the contrast of dielectric
cylinder is 4. The DOI and measurement curve remain the
same as those in the first example. Forty transmitters and
receivers are equally spaced in the measurement curve. The

Fig. 9. Example 2: (a) Real part of original contrast; (b) imaginary part
of original contrast; and (c) imaginary parts of original T-matrix. (d) Initial
value of contrast sources for normal CSI and inverse T-matrix method;
(e) and (f) Real and imaginary parts of reconstructed contrast with normal
CSI; (g) Imaginary part of reconstructed T-matrix with inverse T-matrix
method; (h)–(k) Initial value of the contrast source, real part of reconstructed
contrast, imaginary part of reconstructed contrast, and reconstructed T-matrix,
respectively, with APUM.

discrete form of the problem is obtained by dividing DOI into
30 × 30 subsquares. The incident fields are optimized with
kq ∈ [−6k0, 6k0]. The reconstructed results with normal CSI,
inverse T-matrix, and APUM are shown in Fig. 9.

APUM keeps the sharp edges of the rectangle conducting
scatterer in the reconstructed result, while normal CSI fails to
reconstruct the conducting scatter and inverse T-matrix obtains
the conducting scatterer with blurred contour. The APUM
result has a clear boundary between the dielectric scatterers
and the conducting scatterers, while both the results from the
normal CSI and inverse T-matrix have gaps between the two
kinds of scatterers. The large imaginary parts of conducting
scatterers ruin the real parts of contrasts in Fig. 9(d) recon-
structed by normal CSI. The zero-order multipole expansion
in the inverse T-matrix lacks high spectrum information and
blurs the reconstructed T-matrix in Fig. 9(f).

The singular values of G0E with and without optimiza-
tion are shown in Fig. 10. The singular values with the
incident field optimized descend slower than those without
optimization.

C. Example 3 With Synthetic Data

To verify the method on real application scenarios, the third
example is a safety inspection scene. We modeled the cross
section of the human body permittivity image at 900 MHz
according to high-resolution axial anatomical images of the
male dataset from the Visible Human Dataset, Visible Human
Project (NIH, USA). A metal gun is carried against the
body, of which the cross section is a rectangle with a size
of 12.4 cm × 3.6 cm.

The DOI is 0.64 m × 0.64 m and desecrated to
98 × 98 subunits. The forward problems are calculated with
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Fig. 10. Example 2: SVD of operators G0 and G0E. The x-axis is the
number of singular values and y-axis is the normalized singular value. The
black dashed line is the SVD of G0; the blue dotted line is the SVD of G0E
in classical-CSI; the red line is the SVD of G0E in superoscillation-CSI; and
the thin black dotted line is the reference line of 0.1.

Fig. 11. Example 3: (a) Real part of original contrast; (b) imaginary part
of original contrast; and (c) imaginary parts of original T-matrix. (d) Initial
value of contrast sources for normal CSI and inverse T-matrix method;
(e) and (f) Real and imaginary parts of reconstructed contrast with normal
CSI; (g) Imaginary part of reconstructed T-matrix with inverse T-matrix
method; (h)–(k) Initial value of the contrast source, real part of reconstructed
contrast, imaginary part of reconstructed contrast, and reconstructed T-matrix,
respectively, with APUM.

a 262 × 262 grid mesh to avoid inverse crime. Eighty trans-
mitters illuminate the DOI on the circle of radius 1 m,
and 80 receivers on the same circle collect the scattering
field at each illumination. The incident fields are optimized
with kq ∈ [−6k0, 6k0]. The reconstruction results of APUM
with optimized incident fields, inverse T-matrix with uniform
incident fields, and normal CSI with uniform incident fields
are shown in Fig. 11.

The cross section of human body is wavelength scale, which
makes normal CSI and inverse T-matrix method fail in recon-
struction. By comparison, the APUM result can reconstruct
the outline of the body and indicate the weapon. Therefore,
APUM with optimization can reconstruct the subwavelength
scale scatterers with mixed boundary conditions effectively.

D. Example 4 With Experimental Data

To validate the proposed method against the experimental
data, we adopt the experimental dataset collected by Institute
Fresnel, Marseille, France [55]. The dataset “FoamMetExt” is

Fig. 12. (a) Real parts of original contrasts; (b) imaginary parts of original
contrasts; and (c) imaginary parts of original T-matrix; (d) Real parts of
reconstructed contrasts with normal CSI; (e) imaginary parts of reconstructed
contrasts with normal CSI; and (f) imaginary parts of reconstructed T-matrix
with inverse T-matrix; (g) Real parts of reconstructed contrasts with APUM;
(h) imaginary parts of reconstructed contrasts with APUM; and (i) recon-
structed conducting T-matrix with APUM.

tested, where a copper cylinder with a radius of 28.5 mm is
placed against a foam cylinder with a radius of 80 mm in DOI.
The foam cylinder has εr = 1.45 ± 0.15. Eighteen sources
illuminate the DOI in turn around a circle with a radius of
1.67 m. The scattering field of each illumination is collected
at 241 receiving locations in the circle with a radius 1.67 m.
The data are collected at 17 frequencies from 2to 18 GHz.

We use the data at 4 GHz for reconstruction. The DOI is of
size 150 mm × 150 mm and discrete as 44 × 44 subsquares.
Fig. 12 compares the reconstruction result of APUM with the
result of inverse T-matrix, of which the APUM result is better
than inverse T-matrix result.

Because of the existence of PEC scatterers with large
imaginary part, the normal CSI method fails to reconstruct
the scatterers in this configuration. With larger DOI and finer
mesh, the normal CSI method can perform better [14]. The
result of APUM is also affected by the rough grid, which
results in the gap between the PEC scatterer and the dielectric
scatterer. Only 4 GHz data are applied in the reconstruction,
and the copper cylinder is 0.38λ, which shows the effective-
ness of the proposed method handling subwavelength scale
objects.

VI. CONCLUSION

In this article, we proposed a method for the mixed bound-
ary condition ISP. The contrast of the dielectric scatterers and
the T-matrix of the PEC scatterers are alternately updated,
which avoids the contrast interfered by the large imaginary
parts of PEC scatterers and improves the accuracy of the
reconstructed T-matrix. The proposed method was verified
against synthetic data and experimental data. Compared with
APUM, normal CSI is vulnerable to imaginary parts of
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conducting scatterers, and the inverse T-matrix lacks high
spectrum information for limited multipole expansion orders.

To further improve the resolution, we studied the regular-
ization effects of superoscillatory incident fields and proposed
a method to apply these regularization effects to objects
with mixed boundary conditions. The superresolution ability
of nonlinear inverse scattering is attributed to evanescent-to-
propagating wave conversion effects, which is doubted in [9]
and [27]. We provided a superresolution method in nonlinear
ISP by quantitatively converting the high spatial spectrum of
contrasts into low spectrum contrast sources, which can retain
the high-frequency information in the low-passband of the
Green function. The proposed method achieves similar effects
of evanescent-to-propagating wave conversion. The mixing
between the local spectrum of the superoscillatory incident
field and the spectrum of objects can produce low-spatial
frequency contrast sources. With the a priori information
of incident fields, high-frequency information of objects can
be retrieved by solving the nonlinear ISP. Furthermore, the
incident field is linear to the scattering data. The scattering data
of optimized incident fields can be obtained by weighting the
combination of the scattering data of incident fields without
optimization. Therefore, the optimization of incident fields
is a regularization strategy of the scattering equation. The
numerical example shows that the optimization can improve
the small singular values of compact operator G0E.

In this article, we focused on the applications that require
low-frequency waves to penetrate the imaging area, such as
the through wall and ground penetrating imaging. In these
practical applications, the scale of region of interest (ROI)
is always limited. With given configurations of antenna array
and the SNR, the smaller the ROI, the more significant the
superoscillation. Therefore, we can start with illuminating the
ROI with low-frequency wave carrying strong superoscillation
effects. Then, the ROI can be narrowed down according to the
result in the first illumination. Then we can further illuminate
the new ROI with higher frequency and repeat the last step
until the whole ROI filled with objects.

The optimization of incident fields is a general strategy
applicable to all ISPs with boundary condition models or
volume equivalence models. APUM combines the strength of
two models and makes the regularization strategy available
for different kinds of objects. APUM with incident field
optimization introduces little a priori information and achieves
much higher resolution.

Further improvements of the inverse algorithm and the use
of a priori information on this framework are indeed expected.

APPENDIX

In the T-matrix model, the DOI is discretized into N small
cylindrical elements at first. The center of the nth elements is
rn . The qth incident field is composed of I multipoles with
expansion degrees γ ranging from −τ to +τ

Einc(r) = uz

I∑
i=1

+τ∑
γ=−τ

aγ i(q)H (2)
γ (k0|r − r i |)e jγϕ(r−r i ) (A1)

where αγ i is the γ th expansion of the i th multipole, ri is the
position of the i th multipole, ϕ(r − ri ) is the angle of r − ri

in the cylindrical coordinates, and H (2)
γ is the γ th order

second kind Hankel function. According to Graf’s addition
theorem, the incident field of the i th multipole is expressed as
a multipole expansion on the center of the nth elements

H (2)
γ (k0|r − r i |)e jγϕ(r−r i )

= e jγπ

[ +∞∑
p=−∞

H (2)
γ+p(k0|r i − rn|)e j(γ+p)ϕ(r i −rn)

Jp(k0|r − rn|)e− j pϕ(r−rn)

]
(A2)

where Jp is the pth order Bessel function. The corresponding
multipole expansion of the scattering field outside the nth
cylinder can be expressed as

Esca(r − rn)

= uz

+∞∑
p=−∞

[
cnp(q)H (2)

p (k0|r − rn|)e− j pϕ(r−rn)
]

+
N∑

n′=1
n′ 	=n

+∞∑
p=−∞

⎡
⎣cn′ p(q)

+∞∑
l=−∞

H (2)
p+l(k0|rn − rn′ |)

× e− j(p+l)ϕ(rn−rn′)

Jl(k0|r − rn|)e jlϕ(r−rn)e− j pπ

⎤
⎦

(A3)

where cnp is the unknown pth order scattering coefficient of
the nth element. The transmitting field inside the nth cylinder
is given by

Etran(r) = uz

+∞∑
p=−∞

bnp(q)Jp(kn|r − rn|)e− j pϕ(r−rn) (A4)

where bnp is the unknown pth order transmitting coefficient
of the n th element, and kn is the wavenumber inside the nth
element.

Therefore, the transmitting boundary condition on the sur-
face of the nth element with radius R can be expressed as[

Einc(r) + Esca(r)
]
|r−rn |=R

= Etrans(r)
∣∣|r−rn |=R

(A5)

while the right components of (A5) are zero in the PEC scat-
terers. The corresponding boundary condition of the magnetic
field for the nth element is obtained from the electric field as[
∂ Einc(r)

∂r
+ ∂ Esca(r)

∂r

]
|r−rn |=R

= ∂ Etrans(r)
∂r

∣∣∣∣|r−rn |=R

. (A6)

Solving (A5) and (A6) along with the orthogonal property
of exp [−jpϕ(r − rn)], we obtain the pth order of the scattering
coefficients from the nth element

Jp(k0 R)

I∑
i=1

+∑
γ=−

[
aγ i H (2)

γ+p(k0|r i − rn|)
e jγπe j(p+γ )ϕ(r i −rn)

]

+ J−p(k0 R)

N∑
n′=1
n′ 	=n

+∞∑
p′=−∞

[
cn′ p′ H (2)

p′−p(k0|rn − rn′ |)
e− j p′π e j(p−p′)ϕ(rn−rn′)

]

+ cnp H (2)
p (k0 R) = bnp Jp(kn R) (A7)
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and

J ′
p(k0 R)

I∑
i=0

+∑
γ=−

[
aγ i H (2)

γ+p(k0|r i − rn|)
e jγπe j (p+γ )ϕ(ri −rn)

]

+ J ′
−p(k0 R)

N∑
n′=1
n′ 	=n

+∞∑
p′=−∞

[
cn′ p H (2)

p′−p(k0|rn − rn′ |)
e− j p′π e j (p−p′)ϕ(rn−rn′ )

]

+ cnp H (2)′
p (k0 R) = kn

k0
bnp J ′

p(kn R). (A8)

Introducing (A7) into (A8), we have

cnp = t p
n

⎡
⎣i p

n +
N∑

n′=1

+∞∑
p′=−∞

s p,p′
n,n′
(
1 − δn,n′

)
cn′ p′

⎤
⎦ (A9)

where

δn,n′ =
{

0, n 	= n′

1, n = n′ (A10)

s p,p′
n,n′ = e j(p−p′)π H (2)

p′−p(k0|rn − rn′ |)e j(p−p′)ϕ(rn−rn′) (A11)

and

i p
n (q) =

I∑
i=1

+τ∑
γ=−τ

αγ i (q)e jγπe j(γ+p)ϕ(ri −rn)

H (2)
γ+p(k0|r i − rn|).

(A12)

The element with the dielectric boundary condition has the
parameter

t p
n = kn Jp(k0 R)Jp+1(kn R) − k0 Jp(kn R)Jp+1(k0 R)

k0 Jp(kn R)H (2)
p+1(k0 R) − kn H (2)

p (k0 R)Jp+1(kn R)
(A13)

while the element with the PEC boundary condition has the
parameter

t p
n = − Jp(k0 R)

H (2)
p (k0 R)

. (A14)
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